International Journal of Advanced Research in Computer and Communication Engineering

SITES

Smart And Innovative Technologies In Engineering And Sciences

Gyan Ganga College of Technology Vol. 5, Special Issue 3, November 2016

Miniaturization of Microstrip Patch Antenna using Fractal Geometry

Kanika Garg

Asst. Professor, Department of Electronics and Communication, Gyan Ganga College of Technology, Jabalpur, India

Abstract: The development of communication engineering with compact technology demands size reduction of low frequency antennas as an important design perspective. In this work, a microstrip patch antenna with different shaped fractal slots has been implemented. Due to the introduction of the fractal geometry a 20-80% reduction in size and thereby miniaturization of an ordinary microstrip patch antenna for the same resonant frequency is achieved. However size reduction reduces the gain of designed antenna which is then enhanced to a sufficient level by using 4- element array of the same antenna structure as an element reducing the size reduction to 33 %. A 2-element array is then designed to achieve good gain as well as appreciable size reduction of 66 %. The radiation characteristics were simulated.

Keywords: Microstrip, Fractal slots, ADS, DGS

I. INTRODUCTION

Microstrip antennas have been used widely in wireless communications due to their light weight, low profile, low cost and ease of fabrication and excellent compatibility with planar integrated circuits and even non planar surfaces. In recent years, as the demand of the small systems have increased, small size antennas at low frequency have drawn much interest from researchers [1]. Reduction of antenna size becomes extremely important in wireless communications and hence it is desired to bring down the size of antenna while achieving the same performance of the large size antenna. Though there is a lower limit to the size of any antenna for a given resonant frequency, other important metrics like Gain and Bandwidth are drastically affected for small size antennas.

Hence the idea is to balance between Gain and Size of the antenna. Many kind of miniaturization techniques, such as using of dielectric substrate of high permittivity [2], slot Fractals mean broken or irregular fragments. Fractals on the patch, DGS at the ground plane or a combination of them have been proposed and applied to microstrip patch antennas. The other method to miniaturize the microstrip antenna is to modify its geometry using different shapes4], [5] based on the perturbation effect [6].

II. REDUCTION OF SIZE MICROSTRIP PATCH ANTENNAS

For very low frequencies of MHz range, the size of the microstrip antennas becomes too large to be manageable.

Many techniques have been used to reduce the size of antenna, such as

- ▶ using dielectric substrates with high permittivity [2],
- ➤ applying resistive or reactive loading [3],

- increasing the electrical length of antenna by optimizing its shape [4],
- Utilization of strategically positioned notches on the \succ patch antenna [5].

Various shapes of slots and slits have been embedded on patch antennas to reduce their size. Slot antennas are used typically at frequencies between 300 MHz and 24 GHz. These antennas are popular because they can be cut out of whatever surface they are to be mounted on, and have radiation patterns that are roughly Omni directional. The currents travel around the slot perimeter increasing the electrical length. As such, a slotted small size antenna is made to perform equivalent to its larger counterpart.

III. FRACTAL SLOTS

describe a complex set of geometries ranging from self similar/ self-affine to other irregular structure. Fractals are generally composed of multiple copies of themselves at different scales and hence do not have a predefined size which makes their use in antenna design very promising. Fractal antenna engineering is an emerging field that employs fractal concepts for developing new types of antennas with notable characteristics.

Fractal shaped antennas show some interesting features which results from their geometrical properties. The unique features of fractals such as self-similarity and space filling properties enable the realization of antennas with interesting characteristics such as multi-band operation and miniaturization. A self-similar set is one that consists of scaled down copies of itself.

IJARCCE International Journal of Advanced Research in Computer and Communication Engineering

SITES

Smart And Innovative Technologies In Engineering And Sciences

Vol. 5, Special Issue 3, November 2016

This property of self-similarity of the fractal geometry aids Higher order fractal antennas exploit the space-filling in the design of fractal antennas with multiband property and enable miniaturization of antennas. Fractal characteristics. The self-similar current distribution on antennas and arrays also exhibit lower side-lobe levels. these antennas is expected to cause its multiband Koch fractal geometry was originally introduced by a characteristics. The space-filling property of fractals tends Helge von Koch in 1904. One starts with a straight line, to fill the area occupied by the antenna as the order of iteration is increased.

Fig 1: Order-2 Koch Fractal Structure

Fig 2: Microstrip Patch Antenna with 7 Fractal slots

called the initiator.

This is partitioned into three equal parts, and the segment at the middle is replaced with two others of the same length. This is the first iterated version of the geometry and is called the generator. The process is reused in the generation of higher iterations. The number of iterations defines the order of the fractals. Shown below is the order-2 fractal structure used in this work

Here a new reduced size microstrip antenna with ultra low profile features is presented [1]. This antenna configuration is shown in Fig. 2. The patch has dimensions of $W \times L$. The Foam substrate which has a relative permittivity $\varepsilon r = 1.028$ and thickness 6mm (240mil) is used.

The ground plane dimensions are Wg \times Lg = 13.57cm \times 12.82cm. The antenna is probe fed the feed locations given by Xf and Yf. Seven fractal defected microstrip structures (DMS) are excoriated from the patch's surface. The lengths of these DMS's are LD and their width are WD, and all have the same dimensions. These DMS's are placed at equal distances ID from each other. Table 1 shows the designed dimensions (mm) that are used for the antenna.

W	L	$\mathbf{W}_{\mathbf{g}}$	$\mathbf{L}_{\mathbf{g}}$	WD	L _D	ID	SLOT THICKNESS	X	Y		
135.7	128.2	165.7	158.2	22.4	123.8	18.5	2	15	63		
\mathbf{T}_{-1}											

Table 1. Designed dimensions of the antenna in mm

Material Specifications

Conductor: Copper $\sigma = 5.8E7$ siemens/m t = 17um Substrate: Foam $\epsilon = 1.02$ h = 6mm

Simulation : Momentum Tool: ADS

The proposed antenna is simulated using Advanced Design Studio (ADS). Fig. 3 shows the simulated and measured return loss versus frequency for the proposed antenna. As it can be seen in this figure, the first resonance occurs at 454 MHz, in comparison with the antenna with the equal size but without DMS's that has a resonance frequency at 1.1 GHz. A rectangular patch with the resonance frequency at 440 MHz must have a total area of about 106704.77mm2. The proposed antenna with the total

area of 17396.7mm2, operates at this frequency. So the size reduction of this approach is about 83.7% in comparison with ordinary patch.

Fig 3: Simulated Return Loss vs. Bandwidth

International Journal of Advanced Research in Computer and Communication Engineering

SITES

Smart And Innovative Technologies In Engineering And Sciences

Thus it is understood that by inserting these defects on the antenna, surface current path's is meandered and hence the electrical length of antenna is increased, although the physical length is left constant. So by increasing the electrical length of the antenna, the resonance frequency is decreased.

This means that for an antenna with the same resonance frequency, the overall surface of antenna is decreased to a great amount. Though excellent size reduction is achieved, the Gain obtained is very less around 2.731dB. The gain characteristics are shown in figure 4 below. Also the radiation pattern is plotted. The E plane polarization pattern is plotted in figure 5 below.

Fig 5.1: E plane polarization cross and coplanar

The simulated antenna impedance bandwidth for 10 dB return loss is also very narrow (below 1%).

Radiated Power Pattern

The following figure shows the 3D radiation pattern for the E.

Figure 5.2: 3D Radiation Pattern of Power

5. GAIN ENHANCEMENT USING ARRAY PATTERN

5.1 4- ELEMENT ARRAY

The antenna element designed above is repeated to get a 4element array with their boundaries separated by 4 mm. Each of the elements is fed with a power 1/4th of the magnitude to obtain the superimposed radiation characteristics.

This technique is shown to offer a very good gain but the size reduction has come down from 84% to 33 %. The antenna structure is shown below:

Fig 6: 4-element Microstrip antenna with fractal slots

return loss plotted against the frequency for each of the 4 ports Shown below in figure 7

Copyright to IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

SITES

Smart And Innovative Technologies In Engineering And Sciences

Gyan Ganga College of Technology Vol. 5, Special Issue 3, November 2016

Fig 7: Return Loss vs. Frequency

The Gain vs. θ is plotted below in figure 8:

The polarization pattern is plotted below:

Fig 9.1: E plane polarization plot, cross and coplanar

5.2 2- ELEMENT ARRAY

Radiated Power Pattern:

A 2-element array is again designed in a similar way. Each of the elements is fed with a power 1/2nd of the magnitude to obtain the superimposed radiation characteristics. This technique is a compromise between the achieved Gain and Size reduction (66%). The antenna structure is shown below:

Fig10: 4-element Microstrip antenna with fractal slots

Shown below in figure 11 is the return loss plotted against the frequency for each of the 2 ports.

International Journal of Advanced Research in Computer and Communication Engineering

SITES

Smart And Innovative Technologies In Engineering And Sciences

Gyan Ganga College of Technology Vol. 5, Special Issue 3, November 2016

COMPARISON OF RESULTS

Performance Metrics	Simple Patch antenna (unslotted)	Single fractal slotted patch (Simulated)	4- element array	2-element array
Resonant frequency, f _R (MHz)	441	454.0	455.5	444.5
Return Loss (dB)	-36.66	-16.73	-18.27	-16.68
Gain at θ=0o(dB)	9.629	2.73	9.57	4.534
Size Reduction (% of simple patch)	0	84	33	66

6. CONCLUSION

Here a new fractal shaped defected microstrip antenna proposed in [1] is implemented. Using these defects, the surface current path is lengthened and thus the resonance frequency is decreased to a great level. When compared with an antenna of the same resonance frequency, a reduction of about 84 % is achieved in antenna size. Gain is enhanced to a great extent by making the 4-element array pattern of the single structure designed with the size reduction falling down to 33 %. A compromised design of a 2- element array pattern of the single structure gives considerable gain as well as 66 % size reduction. The designed structure of the single slotted patch is fabricated and tested for consistency of results. This work is thus a motivation towards applications where the overall volume of the structure is an important factor, such as mobile terminals, etc.

REFERENCES

- A. Kordzadeh and F. Hojat Kashani, "A New Reduced Size Microstrip Patch Antenna with Fractal Shaped Defects," Progress In Electromagnetics Research B, Vol. 11, 29–37, 2009
- [2] Lo, T. K. and Y. Hwang, "Microstrip antennas of very high Permittivity for personal communications," 1997 Asia Pacific Microwave Conference, 253–256, 1997.
- [3] Wang, H. Y. and M. J. Lancaster, "Aperture-coupled thin film superconducting meander antennas," IEEE Transaction on Antennas and Propagation, Vol. 47, 829–836, 1999. Inc, 2007.
- [4] J. P. Gianvittorio and Y. Rahmat-Samii, "Fractal antennas: a novel antenna miniaturization technique, and applications," IEEE Antennas and Propagation Magazine, vol. 44, no. 1, pp. 20–36, 2002.
- [5] Z.-W. Yu, G.-M. Wang, X.-J. Gao, and K. Lu, "A novel small-size single patch microstrip antenna based on Koch and Sierpinski fractal-shapes," Progress in Electromagnetics Research Letters, vol. 17, pp. 95–103, 2010.
- [6] S. Shrestha, S.-K. Noh, and D. Y. Choi, "Comparative study of antenna designs for RF energy harvesting,"International Journal of Antennas and Propagation, vol. 2013, Article ID 385260, 10 pages, 2013.
- [7] A. Kordzadeh and F. H. Kashani, "A new reduced size microstrip patch antenna with fractial shaped defects," Progress in Electromagnetics Research B, no. 11, pp. 29–37, 2009.
- [8] C. A. Balanis, Antenna Theory Analysis and Design, John Wiley & Sons, New York, NY, USA, 3rd edition, 2005.